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The effect of gravity and cavitation on a
hydrofoil near the free surface
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A nonlinear analysis has been made to determine the effects of the free surface and
transverse gravity field on the steady cavity flow past a shaped hydrofoil beneath
the free surface. A closed cavity wake model has been proposed, and a method
for the determination of an analytical function from its modulus and argument on
the region boundary has been employed to derive the complex flow potential in a
parameter plane. The boundary-value problem is reduced to a system of integral and
integro-differential equations in the velocity modulus along the free boundaries and
the velocity angle along the hydrofoil surface, both written as a function of parametric
variables. The system of equations is solved through a numerical procedure, which is
validated in the cases of a cavitating flat plate and non-cavitating shaped hydrofoils
by comparison with data available in the literature. The results are presented in a wide
range of Froude numbers and depths of submergence in terms of the cavity and free-
surface shapes and force coefficients. The influences of the free surface and gravity on
the aforementioned quantities are discussed. The limiting cavity size corresponding
to zero cavitation number in the presence of gravity is found for various initial flow
parameters.

1. Introduction
The study of flows past hydrofoils moving beneath the free surface started to

receive much attention in the late 1950s owing to the development of high-speed
hydrofoil craft, whose foilborne speed can be about twice as high as their hullborne
speed (Acosta 1973). At present, the flow characteristics and motion stability are
understood adequately for a subcavitating foil system. For a higher speed, an
understanding of the interactions between the cavitation region and the free surface as
well as motion stability is still inadequate (Faltinsen 2005). An extremely complicated
question is ventilated cavitation, which may occur if the free surface comes close
to the hydrofoil or the cavity boundary due to a wave disturbance of the free
surface.

The problem of the cavity flow of a fluid with gravity past a submerged body
involves two kinds of problem, which are presented in the literature separately. The
first kind deals with the gravity flow of a fluid past submerged bodies, and the second
kind deals with the cavity flow past hydrofoils beneath the free surface without gravity
effects. The first kind is naturally connected with the theory of progressive gravity
waves on the free surface generated downstream of a submerged body. Although
theoretical methods for solving both kinds of problem are the same, the consideration
of all of these features within the framework of a single problem is lacking in the
literature.
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Most of the theoretical studies for two-dimensional free-boundary flows are based
on the complex-variable function theory. Since any analytical function satisfies the
requirements of fluid incompressibility and zero vorticity, the problem is to find an
analytical function which satisfies the given boundary conditions.

Early studies of the flow past a submerged body were based on the representation
of the body as a dipole, vortex or source and the application of a linearized free-
surface boundary condition (Havelock 1926; Kochin 1937). Keldysh & Lavrentiev
(1935) considered the problem for thin fully wetted foils. Using linearized boundary
conditions, they formulated a mixed boundary-value problem in the upper half-plane,
whose solution is found using the Sokhotsky–Plemel formula. They obtained an
elegant formula CD/C2

L = 0.5/Fn exp[−2/Fnh], where CD and CL are the drag and
lift coefficients of the foil; Fn and Fnh are the Froude numbers for the chord length
of the foil and the depth of submergence h, respectively. The analysis of the total
drag force of a hydrofoil (Faltinsen 2005) showed that the wave contribution to the
drag–lift ratio is quite small at typical Froude numbers.

A linear theory of the flow past a submerged thin foil was developed by Hough
& Moran (1969). They predicted a reduction in the lift force owing to gravity effects
and showed that for Fn ≈ 10 the gravity effects become negligible.

Nonlinear effects in the flow past a submerged body due to the body thickness
and finite amplitude of free-surface waves were studied using the mathematical
apparatus of matched asymptotic expansions. Tuck (1965) showed that nonlinear
second-order effects become important if the cylinder is close to the free surface,
the second-order effects caused by the nonlinearity of the free-surface condition
being more important than the second-order effects related to the body boundary
conditions. Giesing & Smith (1967) presented a method based on an integral
representation of the flow potential generated by sources and vortices distributed
along the hydrofoil surface. Each elementary singularity satisfies the exact boundary
condition on the wetted body and the linearized boundary condition on the free
surface. Since the problem is formulated in the physical plane, the method is
applicable to determining the flow potential about one or more arbitrarily shaped
bodies. Salvesen (1969) considered second-order effects in the free surface boundary
condition for the flow about a submerged hydrofoil. He presented experimental data
and confirmed Tuck’s conclusion obtained for a cylinder that second-order effects
in a free-surface boundary condition are important at relatively small submergences.
Various theoretical formulations of the problem based on the method of matched
asymptotic expansions were also presented by Dagan (1971) and Wilmot (1987). King
& Bloor (1989) obtained an exact nonlinear solution for the flow around a Rankine-
type submerged body formed by a source and sink. They used a conformal mapping
transformation technique and derived, in particular, a nonlinear integro-differential
equation in the velocity angle on the free surface. However, a complete nonlinear
solution for an arbitrarily shaped hydrofoil is still lacking in the literature.

The problem under consideration becomes more complicated for a cavitating
hydrofoil. In addition to the unknown free surface, the cavity shape is also unknown
and should be determined as part of the solution of the problem. Methods based on
the complex-variable function theory effectively solve this kind of inverse boundary-
value problem if the mathematical apparatus is based on the Christoffel–Schwartz
and Schwartz integral formulae or the Sokhotsky–Plemel formula is applicable. These
formulae provide the required analytical function (the complex potential or the
complex conjugate velocity, or both) from its values on the real axis of the upper
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half-plane (Dias & Vanden-Broeck 2003, 2004; Vanden-Broeck 2004; Chapman &
Vanden-Broeck 2006).

A linear theory for a fully cavitating hydrofoil beneath the free surface, which is
based on the Sokhotsky–Plemel formula and does not account for gravity effects,
was presented by Tulin & Burkart (1955). Using the same mathematical technique,
Larock & Street (1967a) presented nonlinear theories for a fully cavitating flat-
plate beneath the free surface without gravity effects and for a fully cavitating
flat-plate in an infinite fluid in the presence of a transverse gravity field (Larock
& Street 1967b). Furuya (1975) extended the Larock & Street approach to predict
characteristics of arbitrarily shaped supercavitating hydrofoils near the free surface
without gravity effects. It is usually assumed that gravity effects for cavity flows are
negligible. Taking into account that this assumption is valid for Froude numbers
Fn = V∞/

√
gc greater than 10 (Hough & Moran 1969), we obtain maximum chord

size c = V 2
∞/(gFn2) ≈ 0.4m for speed V∞ ≈ 20 m s−1. The chord length of high-speed

hydrofoils increases with the size of hydrofoil craft and may exceed this value. Besides,
for supercavitating flows, the foil and cavity can be considered as a submerged body
at zero angle of attack, whose length is much larger than the foil chord length.
This means that gravity effects may affect the flow characteristics at typical Froude
numbers.

In contrast to previous studies, here we present an exact nonlinear solution to the
problem of the cavity flow past an arbitrarily shaped hydrofoil operating beneath the
free surface in the presence of gravity. The proposed cavity closure scheme generalizes
the Wu (1962) idea to simulate, in a certain sense, the cavity wake occurring in real
flows and to obtain a single solution for both partial and fully developed cavitation.
Besides, we obtain a solution for the cavity-free regime as a special case of the
cavity-flow problem.

Our solution method follows that proposed by Zhukovskii (1890) for steady jet
flows of an ideal fluid, the key step being the analytical construction of two governing
functions: the complex velocity and the derivative of the complex potential defined
in an auxiliary parameter region. The problem is formulated in § 2, where these
governing functions are derived. The expression for the complex velocity depends on
the variation of the velocity modulus along the free boundaries and the variation of
the velocity angle along the wetted part of the foil. This function is given in terms of
an auxiliary parameter variable, ζ , which lies in the first quadrant corresponding to the
physical flow domain. By constructing the expression for the complex velocity, we have
obtained a generalized integral formula making it possible to determine an analytical
function from the values of its modulus and argument given on the boundary of a
simply connected domain, which is applicable to different free-boundary flows. Some
specific cases of this integral formula have already been obtained and used when
solving the problems of a free-boundary flow in a corner-shaped Hele-Shaw cell
(Semenov & Cummings 2006) and of self-similar asymmetric entry of a wedge into
water (Semenov & Iafrati 2006).

For a given foil shape, we derive an integro-differential equation in the velocity
angle along the foil and two integral equations in the velocity modulus. The first
integral equation determines the velocity modulus along the cavity and the cavity
closure streamlines, and the second determines the velocity modulus along the free
surface of the flow. These integral equations must be solved numerically to complete
the solution. In § 3, a method of successive approximations adopted for solving the
integral equations is outlined.
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Figure 1. Sketch of the cavity flow past a hydrofoil beneath the free surface: (a) the physical
plane; (b) the complex potential plane; (c) the parameter plane.

As a validation step, in § 4 careful comparisons are made between the calculated
data and experimental data reported in the literature for the case of the cavity-free
flow past a hydrofoil beneath the free surface. The results for cavity flows are reported
in § 5 in terms of the force coefficients and cavity and free-surface shapes in a wide
range of Froude numbers and depths of submergence.

2. Theoretical formulation and analysis
Figure 1(a) shows the flow configuration for our closed cavity-wake closure model.

This model is similar to the Wu (1962) open cavity-wake model, and it simulates zero
transverse pressure gradient in the wake downstream of the cavity. The shape of the
foil is given by the angle β as a function of the spatial coordinate s along the foil,
which starts at the trailing edge on the lower side. A flow parallel to the x-axis attacks
the foil at incidence α. At the stagnation point A at the leading edge of the foil, the
streamline splits into two streamlines, which go along the upper and lower sides of
the foil. The first streamline detaches at some point B downstream of the stagnation
point A. This streamline forms the upper cavity contour BE , which is closed by the
curvilinear contour EF , whose shape is given as a one-parameter family of curves.
The lower streamline starting at the stagnation point A detaches at the trailing point
O of the foil and forms the lower cavity contour OG and the cavity closure contour
GF ′. Point F ′ coinciding with point F is achieved by choosing the form-parameter
of the family of curves EF . The shape of the contour GF ′ is determined from the
solution of the problem under the assumption that the transverse pressure gradient
equals zero inside the cavity-wake region EFF ′G . This assumption with the Bernoulli
equation gives a relation between the velocity modulus along the upper, BEF , and
lower, OGF ′, cavity and cavity closure contours.

The proposed flow scheme makes it possible to consider both partial and fully
developed cavitation as specific cases of one and the same problem. The regimes of
partial cavitation correspond to the case xE < xO . The other case corresponds to fully
developed cavitation.
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The Bernoulli equation can be written for two reference points: at upstream infinity
at depth h or for the cavity detachment point B .

ρ
V 2

2
+ ρgY + p = ρ

V 2
∞
2

+ ρgh + pa = ρ
V 2

B

2
+ ρgYB + pc, (2.1)

where ρ is the liquid density; g is the acceleration due to gravity; pa is the atmospheric
pressure; h is the depth of submergence relative to the trailing edge of the foil; V∞
and VB are the inflow velocity and the velocity at the cavity detachment point; pc is
the pressure in the cavity and YB is the y-coordinate of the cavity detachment point.
The reference elevation is chosen to be zero at the trailing edge of the foil (point O).

Two dimensionless quantities are obtained from (2.1): the cavitation number σ and
the Froude number,

σ =
p∞ − pc

1
2
ρ V 2

∞
, Fn =

V∞√
gc

, p∞ = pa + ρgh. (2.2)

Using the chord length c as the characteristic dimension and the inflow velocity V∞
as the characteristic velocity, (2.1) takes the form

v2 = 1 − cp − 2y

Fn2
, cp =

p − p∞
1
2
ρ V 2

∞
, (2.3)

where v = V/V∞ and y = Y/c are the dimensionless velocity and coordinate,
respectively. Equation (2.3) determines the velocity modulus along the cavity
boundaries where cp = −σ and along the free surface where cp = −2(h/c)/Fn2.

The flow region past the hydrofoil beneath the free surface is a doubly connected
domain. This means that the flow potential can be expressed only by using doubly
periodic elliptic functions of complex variable. In order to avoid the computation of
elliptic functions, we continue the closing contour EF to infinity and consider the
upper, FD ′, and lower, F ′C, sides of the streamline as independent lines. The obtained
flow region becomes a simply connected domain. The same shape of the lines FD ′

and F ′C and the same velocity distribution are the conditions for the determination
of the velocity modulus along the contours FD ′ and F ′C as independent lines.

According to the Helmholtz (1868) and Kirchoff (1869) method, the problem is to
find a function that conformally maps the flow region in the physical plane z onto the
complex potential plane W . Then, the velocity field is determined by the derivative of
the complex potential,

vx − ivy =
dW

dz
,

where vx and vy are the x and y velocity components.
Usually, finding the function W = W (z) directly is a complicated problem. Instead,

Zhukovskii (1890) proposed to map the upper half-plane onto the planes of two
functions, which are the complex potential W and the function ω = − ln(dW/dz).
For steady jet flows past polygonal bodies, the map of the fluid region onto the
W -plane and the ω-plane has polygonal shapes, and the mapping function can be
found using the Schwartz–Christoffel formula. If W (ζ ) and ω(ζ ) are known functions
of the parameter variable ζ , the velocity field and the function mapping the parameter
plane onto the physical plane can be determined as follows:

dW

dz
= exp [−ω(ζ )] , z(ζ ) = z0 +

∫ ζ

0

dW/dζ ′

dW/dz
dζ ′. (2.4)
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In contrast to steady flows of a weightless fluid past polygonal-shaped bodies, for
the problem under consideration, the velocity modulus varies along the free surface
and the argument of the velocity changes along the foil; therefore, we have to use a
different way of constructing expressions for the complex velocity dW/dz and for the
derivative of the complex potential dW/dζ .

We choose the first quadrant of the ζ -plane, where the complex variable ζ = ξ + iη
(figure 1c), to correspond to the physical plane. A conformal mapping allows us to fix
three points O , B and C as shown in figure 1(c), then ζ = a and ζ = id are the images
of points A and D in the physical plane, which should be determined from additional
conditions. The interval 0 < η < 1 of the imaginary axis corresponds to the lower free
boundary OGF ′C, the interval 1 < η < d corresponds to the free surface C ′D, and
the interval d < η < ∞ corresponds to the upper free boundary D′FEB . The real axis
0 < ξ < ∞ corresponds to the wetted part OAB of the foil. Since the actual range
of the complex velocity is unknown a priori, an explicit conformal transformation of
the first quadrant onto the complex velocity plane is a complicated problem.

2.1. Expressions for the complex velocity and for the derivative
of the complex potential

At this stage, we assume that the modulus of the complex velocity is known on the
free boundaries as a function of the parameter variable η and its argument is known
on the wetted part of the hydrofoil as a function of the parameter variable ξ , i.e. the
function dW/dz satisfies the following boundary conditions∣∣∣∣dW

dz

∣∣∣∣
ζ=iη

= v(η), 0 < η < ∞, (2.5)

arg

(
dW

dz

)∣∣∣∣
ζ=ξ

=

{
−π − β, 0 < ξ < a,

−β, a < ξ < ∞,
(2.6)

where β is the slope of the wetted part of the hydrofoil. The argument of the complex
velocity undergoes a step change at the point ζ = a corresponding to the splitting of
the streamline at the stagnation point A in the physical plane.

By using the mathematical technique based on Chaplygin’s singular-point method
(Semenov & Iafrati 2006) or applying the more refined mathematical apparatus
(Semenov & Cummings 2006), it is possible to determine an analytical function from
its modulus and argument given on the imaginary and real axes of the first quadrant.
By following this technique, the final expression for the complex velocity takes the
form

dW

dz
= v0

(
ζ − a

ζ + a

)
exp

[
− 1

π

∫ ∞

0

dβ

dξ ′ ln

(
ζ + ξ ′

ζ − ξ ′

)
dξ ′

− i

π

∫ ∞

0

d ln v

dη′ ln

(
iη′ − ζ

iη′ + ζ

)
dη′ − iβB

]
. (2.7)

It is easy to see that (2.7) satisfies the boundary conditions (2.5) and (2.6). Setting
ζ = ξ in (2.7), it can be seen that arg(dW/dz) = −β(ξ ) for ξ > a and arg(dW/dz) =
−π − β(ξ ) for 0 < ξ < a, i.e. (2.7) satisfies the boundary condition (2.6). On the free
boundaries (ζ = iη), the modulus of (2.7) equals the given function v(η).

For steady free-boundary flows, the streamfunction ψ(x, y) takes a constant value
along the body and free boundaries, therefore the region boundary in the W -plane
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forms a polygonal region (figure 1b). According to Chaplygin’s singular point method
(Gurevich 1965), to determine the function W = W (ζ ), it is sufficient to analyse all
singular points where the mapping is not conformal. The function W = W (ζ ) has
singularities at points O (ζ = 0), A (ζ = a), C (ζ = i), and D (ζ = id), which
correspond to the corner points of the region boundary in the ζ -plane and the W -
plane. The analysis of the behavior of the function arg(W ) at each corner point makes
it possible to determine the order of the singularities in the expression W = W (ζ ),
whose differentiation yields

dW

dζ
= K

ζ (ζ 2 − a2)

(ζ 2 + 1)2(ζ 2 + d2)
, (2.8)

where K is a real scale factor.
Dividing (2.8) by (2.7), we obtain the derivative of the mapping function

dz

dζ
=

K

v0

ζ (ζ + a)2

(ζ 2 + 1)2(ζ 2 + d2)
exp

[
1

π

∫ ∞

0

dβ

dξ ′ ln

(
ζ + ξ ′

ζ − ξ ′

)
dξ ′

+
i

π

∫ ∞

0

d ln v

dη′ ln

(
ζ − iη′

ζ + iη′

)
dη′ + iβB

]
, (2.9)

whose integration along the imaginary axis in the parameter region provides the
free boundaries OGF ′C and BEFD ′ and the free surface C ′D in the z-plane. The
parameters a, d , K and the functions v(η) and β(ξ ) are determined from the boundary
conditions and from physical considerations.

At infinity, the inflow velocity approaches the value v∞ directed along the x-axis. By
taking the argument of the complex velocity (2.7) when ζ = i we obtain the following
nonlinear equation

1

π

∫ ∞

0

d ln v

dη
ln

∣∣∣∣η − 1

η + 1

∣∣∣∣dη + 2 arctan

(
1

a

)
+

2

π

∫ ∞

0

dβ

dξ
arctan

(
1

ξ

)
dξ + β(0) − π = 0.

(2.10)
The depth of submergence h is determined by integrating (2.9) over the interval

0 < η < 1, which corresponds to going along the lower boundary OC and around
the point ζ = i. The latter corresponds to going in a clockwise direction along a
large-radius curve in the physical plane, i.e.

h = Im

(∫ 1

0

dz

dζ

∣∣∣∣
ζ=iη

idη +

∮
ζ=i

dz

dζ
dζ

)
= Im

(∫ 1

0

dz

dζ

∣∣∣∣
ζ=iη

idη

)
+ ψ0c, (2.11)

where the second integral is evaluated by the residue method;

ψ0 =
πK

2

a2 + d2

(d2 − 1)2

is the flow rate in the channel formed by the lines BEFD ′ and free surface C ′D.
The parameter ψ0 can be considered as the flow parameter instead of the depth of
submergence h. The residue integration assumes that the part of the free surface HD
extending to infinity is parallel to the x-axis.

At this stage, we assume that the cavity detaches at some point B at the leading
edge and the length Sw of the wetted part of the hydrofoil is known. Hence, by
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integrating the expression ds/dξ = |dz/dζ |ς=ξ along the real axis 0 < ξ < ∞, we have∫ ∞

0

ds

dξ
dξ = Sw, (2.12)

where

ds

dξ
=

K

v0

ξ (ξ + a)2

(ξ 2 + 1)2(ξ 2 + d2)
exp

[
1

π

∫ ∞

0

dβ

dξ ′ ln

∣∣∣∣ξ + ξ ′

ξ − ξ ′

∣∣∣∣dξ ′ +
2

π

∫ ∞

0

d ln v

dη′ arctan
η′

ξ
dη′

]
.

(2.13)

Equations (2.10)–(2.12) allow us to determine the unknown parameters a, d and K ,
once the functions v(η) and β(ξ ) are specified.

2.2. System of integro-differential equations

By integrating (2.13) along the real axis of the parameter region, we can determine
the spatial coordinate along the foil as a function of the parameter variable

s(ξ ) =

∫ ξ

0

ds/dξ dξ .

Since the function β = β(s) is known, the function β(ξ ) is determined from the
following integro-differential equation

dβ

dξ
=

dβ

ds

ds

dξ
;

by substituting ds/dξ from (2.13), this equation takes the form

dβ

dξ
=

K

v0

χ[s(ξ )]ξ (ξ + a)2

(ξ 2 + 1)2(ξ 2 + d2)
exp

[
1

π

∫ ∞

0

dβ

dξ ′ ln

∣∣∣∣ξ + ξ ′

ξ − ξ ′

∣∣∣∣dξ ′ +
2

π

∫ ∞

0

d ln v

dη′ arctan
η′

ξ
dη′

]
,

(2.14)

where χ(s) = dβ/ds is the foil curvature.

Cavity closure model and the corresponding integral equation

The velocity modulus function v(η) on the interval (ηE, ∞) on the imaginary axis
of the parameter region, which corresponds to the upper cavity contour EB , is
determined by (2.3). In order to determine the velocity modulus on the interval
(d, ηE), which corresponds to the contour D ′FE , we first determine the slope of the
contour EF as a one-parameter family of circular arcs

βup(x) = βE + (βF − βE)
x − xE

Lc

. (2.15)

Here, xE is the x-coordinate of point E, Lc = xF − xE is the given x-projection of
the contour EF , βF = arctan(dylw/dx)|x=xF

is the slope of the lower contour GF ′C at
point F . The free parameter βE , which is the slope of the cavity contour BE at point
E, is determined from the conditions

yup(xF ) = ylw(x ′
F ), xF = x ′

F , (2.16)

which means the coincidence of points F and F ′ lying on the upper and lower cavity
closure contours. The upper and lower boundaries are determined by integration of
the derivative of the mapping function (2.9)

xup(η) = Re[zup(η)], yup(η) = Im[zup(η)], zup(η) = zB +

∫ iη

∞

dz

dζ

∣∣∣∣
ζ=iη′

idη′, (2.17)



Effect of gravity and cavitation on a hydrofoil near the free surface 379

xlw(η) = Re[zlw(η)], ylw(η) = Im[zlw(η)], zlw(η) =

∫ iη

0

dz

dζ

∣∣∣∣
ζ=iη′

idη′. (2.18)

By starting from the point F the upper contour FD ′ is congruent to the lower
contour F ′C, i.e.

βup[x(η)] = arctan

{
dylw

dx
(x)

}
= − arg

(
dW

dz

∣∣∣∣
ζ=iη

)
, d < η < ηF . (2.19)

By taking the argument of the complex velocity in expression (2.7) when ζ = iη,
the following integral equation respect to the function d(ln v)/dη is obtained

1

π

∫ ηE

d

d ln v

dη′ ln

∣∣∣∣η′ − η

η′ + η

∣∣∣∣ dη′ = R(η), d < η < ηE, (2.20)

where

R(η) = βup[x(η)] −
{∫ d

0

+

∫ ∞

ηE

}
d ln v

dη′ ln

∣∣∣∣η′ − η

η′ + η

∣∣∣∣ dη′ − 2

π

∫ ∞

0

dβ

dξ
arctan

(
η

ξ

)
dξ

−2 arctan

(
η

a

)
+ π − β(0),

On the interval 0 < η < 1 corresponding to the lower boundary OC, the function
v(η) = vlw[xlw(η)] is determined according to the cavity closure model, which provides
zero transverse pressure gradient in the cavity closure region EFF ′G . From the
Bernoulli equation

(vlw)2 =

⎧⎨
⎩(vup)2 +

2

Fn2
(yup − ylw), 0 < x < xF ′,

(vup)2, xF ′ < x < ∞,

(2.21)

where

vup[xup(η)] = vB exp

(∫ η

∞

d ln v

dη′ dη′
)

, d < η < ∞.

Equation (2.21) provides the same velocity on the lower, F ′C, and upper, FD ′, sides
of one and the same streamline. The expression for the function R(η) includes the
unknown function d(ln v)/dη on the interval 1 < η < d corresponding to the free
surface C ′D, which is determined from the boundary condition on the free surface.

Free-surface boundary condition

Differentiating with respect to the spatial coordinate the Bernoulli equation (2.3)
written for the free surface, we obtain

v
dv

ds
+

1

Fn2
sinβf r = 0, (2.22)

where sin βf r = dy/ds is the velocity direction on the free surface determined by the
expression for the complex velocity. Taking the argument of (2.7) when ζ = iη, we
obtain

βf r (η) =
2

π

∫ ∞

0

dβ

dξ ′ arctan
η

ξ ′ dξ ′ +
1

π

∫ ∞

0

d ln v

dη′ ln

∣∣∣∣η′ − η

η′ − η

∣∣∣∣ dη′ + 2 arctan
η

a
+ π − β0.

(2.23)
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Using the relations

dv

ds
= v

d ln v

dη

/
ds

dη
,

and

ds

dη
=

∣∣∣∣ dz

dζ

∣∣∣∣
ζ=iη

=
1

v

∣∣∣∣dW

dζ

∣∣∣∣
ζ=iη

=
K

v(η)

η(η2 + a2)

(1 − η2)2(d2 − η2)
,

we can recast the boundary condition (2.22) as the following integral equation in the
function d(ln v)/dη on the interval 1 < η < d

Fn2v3 d ln v

dη
+ K

η(η2 + a2)

(1 − η2)2(d2 − η2)
sin

[
1

π

∫ d

1

d ln v

dη′ ln

∣∣∣∣η′ − η

η′ − η

∣∣∣∣ dη′ + P (η)

]
= 0,

(2.24)
where

P (η) =

{∫ 1

0

+

∫ ∞

d

}
d ln v

dη′ ln

∣∣∣∣η′ − η

η′ + η

∣∣∣∣ dη′ +
2

π

∫ ∞

0

dβ

dξ
arctan

(
η

ξ

)
dξ

+2 arctan
(η

a

)
+ π − β(0),

v(η) = v∞ exp

(∫ η

1

d ln v

dη′ dη′
)

.

The velocity modulus function v(η) is determined by (2.3) and (2.21) and the
integral equations (2.20) and (2.24) on the whole imaginary axis of the parameter
region, while the function β(ξ ) is determined by the integral equation (2.14) on the
whole real axis.

2.3. Cavity detachment

For foils with a sharp leading edge, the cavity detachment point is fixed, and thus the
length of the wetted part of the foil, Sw , is known. For smoothly shaped hydrofoils, the
cavity detachment position is unknown and should be determined from an additional
condition. In the model of ideal fluid, this condition is well known as the Brillouin–
Villat criterion. It is also well known (Arakeri 1975) that in real flows, laminar
separation occurs before cavity detachment and delays cavity formation. In this case,
the pressure increases downstream from the laminar separation point to the cavity
detachment. Therefore, there is a point where the pressure goes through a minimum,
which is lower than the pressure in the cavity. For further details, see Smith (1986).

For various theories of cavity detachment, the Brillouin–Villat criterion remains
the condition that predicts the position of the minimum pressure on the foil, which
is also true for the viscous/inviscid interaction model of cavity flow. In terms of the
present study, it is point B that is both the minimum pressure point and the cavity
detachment point. In terms of the velocity modulus along the foil, the Brillouin–Villat
criterion takes the form

lim
s→Sw

d ln v

ds
= 0. (2.25)

Using the relation

d ln v

ds
=

d ln v

dξ

/
ds

dξ
,
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differentiating the function v(ξ ) = |dW/dz|ζ=ξ and substituting the result into (2.25),
we obtain ∫ ∞

0

d ln v

dη′ η′dη′ +

∫ ∞

0

dβ

dξ ′ ξ
′dξ ′ + πa = 0. (2.26)

This is an equation in the unknown length of the wetted part of the foil, Sw , which
affects the function β(ξ ) = β[s(ξ )], 0 < s < Sw .

2.4. Force coefficients

The drag D and lift L are evaluated by integrating the pressure along the closed foil
surface Γ in a clockwise direction

FD + iFL = −ic

∮
Γ

(p − p∞) dz, (2.27)

where c is the chord length of the foil, the pressure p = pc along the foil surface
occupied by the cavity, xB � x � xE , and p = pw(x) along the foil, xE � x � 0,
where the cavity closure contour EF may occur for the regime of partial cavitation,
i.e. when xE � 0; pw(x) is the pressure along the contour EF .

Defining the drag and lift coefficients, respectively, as

CD =
FD

1
2
ρ v2

∞c
, CL =

FL

1
2
ρ v2

∞c
, (2.28)

we obtain the following expression

CD + iCL = −i

∮
Γ

(
1 − v2 − 2y

Fn2

)
dz = i

∮
Γ

v2dz + i
2A

Fn2
, (2.29)

where v[x(ξ ), y(ξ )] = |dW/dz|ζ=ξ is the velocity modulus along the wetted part of the
hydrofoil and v[xup(η), yup(η)] = v(η) along the cavity side of the foil, A is the foil
cross-sectional area. The second term represents the buoyancy force due to gravity
for cavitation-free regimes, and it affects only the lift coefficient.

3. Numerical method and its validation
3.1. Numerical approach

In discrete form, the solution is sought on a fixed set of points ξi , i = 1, . . . , N

distributed along the real axis of the parameter region and a fixed set of points ηj ,
j = 1, . . . , M distributed along the imaginary axis. The total number of points ξi

was chosen in the range N = 200–400, and the total number of points ηj was chosen
in the range M = 500–1500 to check convergence of the solution procedure. For all
calculated examples, the difference between the results for the above ranges of N and
M is within the last three figures only.

The points ξi are distributed so as to provide a higher density of the points si = s(ξi)
at the leading edge of the foil, where the slope β(s) changes rapidly and the stagnation
point occurs. The distribution of the points ηj is chosen so as to provide a higher
density of the points sj = s(ηj ) on the free boundaries closer to the foil.

The integrals occurring in the system of equations are evaluated using the linear
interpolation of the functions β(ξ ) and ln v(η) on the intervals (ξi−1, ξi) and (ηj−1, ηj ),
respectively. Besides, because of the logarithmic singularity of the complex potential
at point D, the integrals along the imaginary axis were evaluated through the variable

p = ln |η − d|, (3.1)
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which makes it possible to take into consideration a flow region downstream of the
foil large enough to include at least three crests of the wave surface.

The integral equations (2.14), (2.20) and (2.24) were solved using the method of
successive approximations. The iteration procedure is as follows.

1. In the first iteration, the functions β(ξ ) and v(η) are given as β(ξ ) ≡ β(0) and
v(η) ≡ v∞ to find the solution of the system of nonlinear equations (2.10)–(2.12).

2. The integro-differential equation (2.14) is solved by internal iteration including
the system of nonlinear equations (2.10)–(2.12). The result is the computed function
β(ξ ).

3. The integral equation (2.20) is solved by internal iteration including the system
of nonlinear equations (2.10)–(2.12) and using the conditions (2.15), (2.19) and (2.21).
The result is the velocity modulus function computed along the upper and lower cavity
boundaries and closure contours continuing downstream as congruent streamlines.

4. The iteration process is repeated starting from step 2 until convergence is
reached. The solution obtained in the first external iteration corresponds to the cavity
flow of a weightless fluid.

5. By solving the integral equation (2.24), a new velocity modulus function v(η)
along the free surface is determined. The next external iteration starts from step 2.

3.2. Validation of the numerical approach for a fully cavitating flat plate
without gravity

For validation purposes, the numerical approach is applied to solve the cavity flow
past a flat plate beneath the free surface of a weightless fluid. This problem is much
simpler since the function β(ξ ) ≡ α − π and the velocity modulus on the free surface
v(η) ≡ v∞, 1 < η < d . Only one nonlinear integral equation, (2.20), together with
equations (2.15), (2.19) and (2.21) has to be solved for the determination of the
velocity modulus along the upper and lower cavity and closure contours.

In figure 2, the lift coefficient divided by α as a function of the streamfunction on
the free surface is shown and compared with the Larock & Street (1967a) nonlinear
solution for a fully cavitating flat plate beneath the free surface. Larock & Street
(1967b) used a ‘double-spiral-vortex’ model (Tulin’s second scheme) for the cavity
closure and formulated a mixed-boundary-value problem for the complex velocity
function, whose solution is based on the Sokhotsky–Plemel formula. The discrepancy
between the obtained and Larock & Street (1967a) results is less than 5% for depths
of submergence h ≈ ψ0/v∞ > 1. However, for lower depths and angles of attack
α > 70, Larock & Street’s results do not agree with the present solution, and there
are no physical causes for lift reduction as the foil approaches the free surface. On
the contrary, the hill on the free surface over the cavity becomes larger. This increases
the local angle of attack near the foil and, correspondingly, the lift force. Besides, the
linear theory by Johnson (1961) predicts a lift increase up to the value CL/α = π
when ψ0 → 0. The difference in the ratio CL/α for different angles of attack shows
the nonlinear effects of the solutions.

3.3. Validation for non-cavitating flows under the action of gravity

The next step in validating the numerical procedure involves all the derived integral
equations. In order to consider the cavity-free regime as a specific case of the solution
derived in § 2, we put the cavity length equal to zero and consider the upper side of
the foil ET as a part of the cavity closure contour EF (figure 3). The part TF is given
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Figure 2. Comparison between the present (solid lines) and Larock & Street (1967a) (dashed
lines) solution for the lift coefficient divided by α as a function of the streamfunction on the
free surface at cavitation number σ = 0.075.
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Figure 3. Model of flow around the trailing edge of NACA hydrofoils of thickness δt .

by the slightly modified (2.15)

βup(x) = βT + (βF − βT )
x − xT

Lc

, xT < x < xT + Lc, (3.2)

where βT is the foil slope at the trailing edge of the foil (point T ) and the length Lc

is chosen to satisfy the condition (2.16).
There is some arbitrariness in the placement of point E. It might be chosen directly

at the trailing edge of the foil. However, in this case for low depths of submergence,
h/c < 1, the parameters a, d , K become too large owing to the logarithmic singularity
in the complex potential at point D. In physical terms, this means a weak interference
of the flow parameters on the lower and upper sides of the hydrofoil for low depths
of submergence. If point E is chosen close to the leading edge of the foil, then the
flow region between the upper side of the foil and the free surface belongs to the
channel formed by the free streamlines BEFD ′ and C ′D. This region corresponds to
a very small vicinity, |ς − id| < ε, of point D in the parameter plane and, therefore,
affects the parameters a, d and K only slightly. The interaction between the main
and the channel flow downstream of the foil is provided in the physical plane owing
to the conditions (2.16), (2.19) and (2.21) enforcing the same shape and velocity along
the streamlines FD ′ and F ′C.
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Figure 4. Wave height past the NACA 0012 at incidence α = 5◦ and Fn = 0.5669 for depth
of submergence (a) h/c = 1.286, (b) h/c = 1.163, (c) h/c = 1.035 measured from the mid-chord
point. Solid lines, present solution; dashed lines, Landrini et al. (1999) fully nonlinear numerical
approach; ◦, measurements from Duncan (1983).

The free-surface elevations for the flow past the NACA 0012 hydrofoil at angle of
attack α = 5◦ and Froude number Fn = 0.5669 are shown in figure 4 and compared
with experimental data (Duncan 1983) and with the results obtained through the fully
nonlinear numerical approach by Landrini, Lugni & Bertram (1999). Agreement with
the fully nonlinear numerical model is reasonably good. The discrepancy between the
experimental and calculated data for a lower depth of submergence (figure 4c) also
occurs for other numerical approaches as shown by Landrini et al. (see references
therein).

Another validation step is made by considering the shape of the free surface
downstream. In figure 5, the wave profiles downstream of the NACA 0012 hydrofoil
at angle of attack α = 3◦, Froude number Fn = 0.7 and several depths of submergence
are shown and compared with the numerical solution for progressive wave motion
(M. Greco 2006, personal communication). This figure also shows analytical results
of Schwartz (1974) for the second-order approximation of the Stokes progressive
free-surface wave profiles. Agreement with the fully nonlinear numerical solution is
rather fine (the difference is invisible) while the second-order Stokes theory predicts a
somewhat smaller wave steepness. The depths of submergence and the corresponding
wavelengths and heights are presented in table 1. The length of progressive waves
predicted by the linear theory for Froude number Fn = 0.7 is λlin/c = 2πFn2 = 3.08.
As shown in table 1, the nonlinear effects slightly reduce the wavelength.
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Figure 5. Wave profiles downstream of the NACA 0012 hydrofoil at angle of attack α = 3◦

and Froude number Fn = 0.7 for several depths of submergence shown in table 1. Solid lines,
present solution; dashed lines, second-order Stokes theory; dotted lines, Greco’s fully nonlinear
numerical solver.

h/c λ λ/λlin,% H/c H/λ
0.840 2.810 91.3 0.280 0.0996
0.940 2.880 93.5 0.245 0.0851
1.129 2.985 97.0 0.182 0.0610
1.330 3.045 98.9 0.125 0.0411

Table 1. Length and height of the wave downstream of the NACA 0012 hydrofoil at angle
of attack α = 3◦ and Froude number Fn = 0.7 with several depths of submergence.

The verification of the numerical results concerning the force coefficients is based
on comparison with the results predicted by linear theories. Kochin (1937) gave
a solution for the flow around a submerged vortex with a linearized free-surface
boundary condition and derived the formula

CD/C2
L = 0.5/Fn exp[−2/Fnh]. (3.3)

Because the lift force arises from the velocity circulation around the hydrofoil, this
formula is applicable to evaluating the wave-drag force for thin submerged hydrofoils
if the velocity circulation is known.

In figure 6, the ratio CD/C2
L is shown as a function of the submergence Froude

number for the NACA 0012 hydrofoil at an angle of attack of 3◦ for various
depths of submergence (dashed lines). Agreement between the nonlinear solution and
the dependence (3.3) is reasonably good. This means a minor contribution of the
nonlinear effects on the free surface to the force coefficients. Some difference occurs
at the maximum of the dependencies corresponding to the maximum of the wave
steepness on the free surface downstream of the hydrofoil. The obtained agreement
also shows a weak influence of the NACA 0012 hydrofoil thickness.

Hough & Moran (1969) obtained a linear solution for the flow past a thin submerged
hydrofoil in the presence of gravity and identified the lift reduction due to gravity.
Their results are presented in terms of the ratio CL/C∗

L inf , where C∗
L inf is the lift

coefficient at infinite depth. For a thick hydrofoil like the NACA 0012, the lift
CL inf (Fn) = C∗

L inf +2A/Fn2 includes both the hydrodynamic lift C∗
L inf due to velocity

and the static lift due to the buoyancy force depending on the Froude number. In
figure 7, the ratio CL/C∗

L inf as a function of the Froude number predicted by the linear
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Figure 7. Comparison between the lift coefficient of the NACA 0012 hydrofoil obtained by
the present nonlinear approach (solid lines) and the lift coefficient of a flat plate predicted by
Hough & Moran’s linear solution (dash lines) for various depths of submergence.

theory is compared with the ratio CL/CL inf (Fn) obtained from the present nonlinear
solution. Agreement is good for depths of submergence h/c of 2 and 5 while for
depth h/c = 1, the nonlinear effects and the foil thickness lead to a somewhat greater
reduction in the lift coefficient.

Figure 8 shows wave profiles past the NACA 0012 for various Froude numbers.
As illustrated, the waves are sinusoidal in form, excluding some region near the foil.
The relationship between the wave amplitude and the drag coefficient obtained from
the solution agrees with that proposed by Salvesen (1969), H/2 = Fn

√
2CD (here, H

is the wave height), so well that the discrepancy is less that 1%.
The results presented above show a good agreement between the linear and

nonlinear theories concerning the force coefficients, the wavelength and amplitude
in a wide range of Froude numbers.

4. Results for cavity flows
Cavitation may occur on a hydrofoil if the local pressure becomes lower than the

vapour pressure of the liquid. Another case is ventilated cavitation, which is caused
by gas injection into the low-pressure region on the foil. In both cases, the vapour/air
bubble remains attached to the hydrofoil, which changes the flow geometry and
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Figure 8. Froude-number effect on the wave profile past the NACA 0012 at incidence
α = 3◦ and depth of submergence h/c = 2.

leads to the loss of the leading-edge suction or forms drag, thus precluding the use of
conventional hydrofoils similar to subsonic airfoils. Following Tulin & Burkart (1955),
supercavitating hydrofoils are usually designed to have a sharp leading edge and a
shaped wetted side providing a pressure peak near the trailing edge. The calculations
presented below have been carried out for a cavitating flat plate as a simple case to
study the effects of submergence, gravity, and cavitation development. The shape of
a hydrofoil may be easily accounted for by including the integro-differential equation
(2.14) into the calculation process.

Figure 9 indicates how the cavity streamlines and the free surface change as the
hydrofoil approaches the free surface. As the depth of submergence decreases, the
cavity becomes shorter and the free-surface elevation becomes greater. Such behaviour
of the free surface increases the local angle of attack, say, at a one-chord distance
upstream. Although the maximum elevation of the free surface decreases with depth,
it starts to grow at a larger distance upstream. As the depth decreases, the jet formed
by the free surface and the upper cavity contour becomes thinner and the pressure
difference between the jet sides leads to a higher acceleration of the fluid directed
inside the cavity. This increases the jet curvature and reduces the cavity length.

The cavity contours and the free surfaces for various Froude numbers at depth of
submergence h/c = 1.0 are shown in figure 10. The gravity mostly affects the upper
cavity contour and the free surface, and it does so in such a way that the thickness of
the jet remains about constant. Since the gravity force acts in the same direction as
the pressure difference between the jet sides, the cavity becomes shorter for a larger
gravity or a smaller Froude number.

The cavitation number dependences of the cavity length for various Froude numbers
are shown in figure 11. It is clearly seen that for Froude numbers Fn < ∞ the cavity
length takes a finite value for zero cavitation number. In this case, the liquid jet is
in a free fall in the gravitational field. As may be seen in figure 11, the greater the
gravity (the smaller the Froude number), the shorter the cavity.

The Froude number dependences of the cavity length at zero cavitation number
are shown in figure 12. It is the largest possible steady cavity in a fluid under gravity.
If the pressure in the cavity is larger than the pressure at infinity at the same depth
of submergence, then the pressure gradient accelerates the fluid at the cavity end
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σ = 0.1. Solid lines, h/c = 0.5; dashed lines, h/c = 2; dotted lines, h/c = 10. The free surface
for h/c = 0.5 in (a) and (b) is the same free surface.

2.0

1.5

1.0
y

0.5

0

0 4 8 12 16 20
–0.5

x

Figure 10. Effect of the Froude number on the cavity contours and the free surface for a flat
plate at incidence α = 10◦, depth of submergence h/c = 1.0, and cavitation number σ = 0.05.
Solid lines, Fn = ∞; dashed lines, Fn = 5; dotted lines, Fn = 2.
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Figure 11. Effect of the Froude number on the cavitation-number dependence of the cavity
length at depth of submergence h/c = 1. Solid line, Fn = ∞; dot dot dashed line, Fn = 10;
dot dashed line, Fn = 5; dotted line, Fn = 3; dashed line, Fn = 2.



Effect of gravity and cavitation on a hydrofoil near the free surface 389

60

50

40

30lc max
c

20

10

0
2 4 6

Fn

8 10

Figure 12. Cavity length at zero cavitation number versus Froude number for various depths
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Figure 13. Lift coefficient predicted by the present theory (solid lines), Parkin’s linear theory
(dashed lines) and Larock & Street’s nonlinear theory (dotted lines) for an unbounded flow
region at incidence α = 5◦; solid symbols, Fn = ∞; open symbols, Fn = 4.

downstream and makes the cavity grow in size. As seen in figure 12, as the gravity
tends to zero (the Froude number tends to infinity), the predicted maximum cavity
length tends to infinity, which corresponds to the Kirchhoff flow in a weightless
fluid. It should be noted that a finite cavity length in the presence of gravity at zero
cavitation number was indicated by Tulin (1964).

Figure 13 shows the cavitation number dependences of the lift coefficient predicted
by the present theory, Parkin’s linear theory and Larock & Street’s (1967b) nonlinear
theory for an unbounded flow region and two values of the Froude number. The
results of the present theory are calculated for the depth of submergence h/c = 100,
at which free-surface effects are negligible. Note that for the case of a weightless
fluid (Fn = ∞) there are some discrepancies between these theories, which become
more pronounced for larger cavitation numbers. If for Parkin’s fully linear theory this
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Figure 14. Effect of submergence on the lift coefficient at cavitation number σ = 0.05 and
incidence α = 10◦ for various Froude numbers; solid line, Fn = ∞; dot dot dashed line,
Fn = 10; dot dashed line, Fn = 5; dotted line, Fn = 3; dashed line, Fn = 2.

discrepancy may be due to the linearization of the problem, then for the Larock &
Street’s nonlinear theory it may be due to numerical errors. We have also compared
our results for the case of an infinite Froude number with the Wu (1962) results and
found good agreement. As seen from figure 13, for the case of gravity with Froude
number Fn = 4, all these theories agree for low cavitation numbers. For larger
cavitation numbers, Parkin’s linear theory and ours predict a similar lift reduction
due to gravity, although the discrepancy in the lift coefficients increases. Larock &
Street’s results show lift reduction due to gravity only for small cavitation numbers
σ < 0.1.

The effect of the free surface in the presence of gravity is shown in figure 14. As the
foil approaches the free surface, the lift coefficient increases. This surface effect was
studied using the linear theory by Johnson (1961) for a weightless fluid at zero cavita-
tion number. He found the lift to increase from 0.5πα to πα as the foil approaches the
free surface. It is opposite to what occurs in the u cavitation-free regime, where the
lift coefficient decreases from 2πα to the same value πα (Bernicker 1966). Figure 9b
shows the cause of the lift increase. The hydrofoil affects the free surface upstream
and forms a liquid hill over the foil, which increases the local angle of attack.

An important feature is the negative slope of the dependence CL(h), which increases
the probability of destabilization for a supercavitating hydrofoil craft. As seen from
figure 14, gravity decreases the lift coefficient, but the slope of the dependence CL(h)
remains almost the same as for the gravity-free case. This means that a hydrofoil
craft with a submerged supercavitating foil system requires automatic control to keep
the design depth of submergence. A similar type of instability requiring automatic
control may occur for a hydrofoil craft with a subcavitating foil system operating in
a waving seaway (Faltinsen 2005).

The Froude-number dependences of the lift coefficient are shown in figure 15 for
various depths of submergence at incidence α = 10◦ and cavitation number σ = 0.05.
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Figure 15. Effect of the Froude number on the lift coefficient at cavitation number σ = 0.05
for various depths of submergence. Solid line, h/c = 10.0; dot dot dashed line, h/c = 5.0; dot
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This figure shows both the Froude number and submergence effects on the lift
coefficient of a flat plate. Throughout the range of Froude numbers presented in
figure 15, the lift decreases monotonically with decreasing Froude number. However,
for very small Froude numbers, the lift should increase in just the same way as
for cavity-free flows. Indeed, for small Froude numbers, the cavity length tends to
zero for any cavitation number. This can be seen from figure 12 if we extrapolate
the dependence of the maximum cavity length to Fn < 2. This means that the lift
coefficient should be consistent with the results for the cavity-free flow presented in
figure 7. The lift increase for small Froude numbers occurs because of the dominant
effect of gravity on the free surface, which becomes flat and can be considered as a
symmetry line of the flow. The velocity induced by the image foil leads to a larger
angle of attack thus increasing the lift, and its influence increases for lower depths of
submergence (Faltinsen 2005).

One of the earlier experimental investigations of cavitating hydrofoils near the free
surface was by Dawson (1959). The experiments were carried out for a wedge shaped
hydrofoil inside a free-surface water tunnel at an inflow velocity corresponding to
Froude numbers in the range F = 3.0 − 4.5. To obtain a supercavitating flow for
such a low inflow velocity, air was forced into the wake of the hydrofoil to form a
constant pressure cavity. In figure 16, Dawson’s experimental results are compared
with the present theory and Wu’s theory for a weightless infinite fluid. The presented
results correspond to depth of submergence h/c = 0.9 and Froude number Fn = 4.
We first note a good agreement between the present and Wu’s theories, which looks
surprising in the context of the results shown in figures 14 and 15. However, this
agreement is just a happy occurrence due to a particular combination of the depth
of submergence and the Froude number.

From figures 14 or 15 we can find that the lift coefficient for Froude number Fn = 4
and depth of submergence h/c = 1 is almost the same as for Fn = ∞ and h/c = 50.
The experimental normal force coefficients for lower cavitation numbers agree very
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Figure 16. Cavitation-number dependences of the normal force coefficient for depth of
submergence h/c = 0.9 and Froude number Fn = 4; the solid lines marked with the solid
symbols correspond to the present calculations for angles of attack of 8◦, 10◦, 12◦, 14◦ and 16◦

increasing from bottom to top; the same open symbols correspond to Dawson’s experimental
data; the dashed lines correspond to Wu’s nonlinear theory for an unbounded flow region of
a weightless fluid.

well with the present theory in a wide range of angles of attack. The larger the angle
of attack, the more noticeable the discrepancy between Wu and the present theories,
which is testimony to the influence of the free surface. However, agreement between
the experimental data and the present theory remains good for all angles of attack.

Finally, we note that Froude numbers less than 10 and low cavitation numbers, say,
σ < 0.1, can be realized in practice only for ventilated cavitation. From the definition
of the cavitation and Froude numbers it follows that

Fn2 =
2

σ

(
(pa − pc)

ρgc
+

h

c

)
.

For example, if h = c = 1 m and the pressure in the cavity is equal to the vapour
pressure, pc = pv ≈ 0, then Fn =

√
22/σ = 10

√
2.2 for σ = 0.1. On the other hand,

if the pressure in the cavity is equal to, say, the atmospheric pressure, pc = pa , then
Fn =

√
2/σ ≈ 4.5 for the same value of the cavitation number.

5. Conclusions
An analytical solution of the cavitating flow past a hydrofoil beneath the free

surface of a weighted fluid has been presented. The method employed leads to the
derivation of an analytical expression for the complex flow potential defined in the
first quadrant of the parameter plane. The solution provides a general nonlinear
formulation for several problems considered in the literature separately, namely, for
cavity and cavity-free flows past a hydrofoil beneath a free surface with and without
gravity.

The proposed cavity closure model is a more adequate renewal of Wu’s idea to
simulate the actual flow at the cavity end within the framework of the ideal fluid
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theory. Although this is not a major focus of our study, the proposed cavity closure
model includes such important features as zero pressure gradient across the wake
and the cavity closing at some distance downstream from the cavity end. The latter
is an important feature for modelling cavity flows near the free surface. Besides, both
partial cavitation and supercavitation are covered by the presented formulation.

The presented numerical results show how the cavity and free-surface shapes change
as the hydrofoil approaches the free surface or/and the gravity increases in a wide
range of depths of submergence and Froude numbers. Both the free surface and
gravity result in shortening the cavity length. At the same time, they affect the lift
coefficient in opposition to each other, which may diminish its change. The results
obtained for the lift coefficient are in good agreement with experimental data.

As compared with a weightless fluid, gravity changes the flow pattern at zero
cavitation number and provides a finite cavity length. This maximum possible length
has been obtained for various Froude numbers and depths of submergence. As the
gravity tends to zero, the maximum cavity length smoothly tends to infinity, which
agrees with the gravity-free theory of ideal fluid.

The theoretical formulation of the present study includes the cavitation-free flow
regime as the specific case where the cavity length is set to be zero. The results are
reported in a wide range of Froude numbers in terms of the free-surface elevation, the
wave profile, and the drag and lift coefficients. The obtained values of the combination
CD/C2

L are very close to the dependence CD/C2
L = 0.5/Fn exp[−2/Fnh] obtained

by Kochin for a single vortex beneath the free surface using linearized boundary
conditions on the free surface. Besides, the predicted wavelength downstream of the
foil agrees with the length predicted by the linear theory. Thus, we may conclude
that the nonlinear effects on the free surface affect the lift and drag coefficients only
slightly, at least for the regimes in which the wave steepness is less than 0.1.
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